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A statistical evaluation of the free energy of 
Fe-base ternary ordering alloys 
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The free energy of the Fe-base ternary ordering alloys where B2 and D0 a ordered structures 
are formed is evaluated. The statistical theory is employed using a pairwise interaction 
approximation taking into account not only the atomic interaction but also the magnetic inter- 
action, based upon the Bragg-Wil!iams-Gorsky model. The application of this model on 
Fe-Si-Co ordering alloys are demonstrated. The propriety of the calculation results are per- 
formed by comparing the experimental results. The influences of the magnetic energy to the 
stability of ordered structures are also demonstrated. 

1. Introduction 
It has been recognized so far that the phase separation 
of the supersaturated solid solution occurs only in 
the alloy systems having the positive interaction 
parameter between the nearest neighbour atoms. 
Recently, however, several experimental studies have 
revealed that the phase separation actually occurs in 
the ordering solid solutions such as Fe-A1 [1-6], Fe-Si 
[7-10], Cu-Zn [11, 12], Cu-Mn-A1 [13] and several 
Fe-base ternary ordering alloys [14-18], which have 
negative interaction parameters. Therefore, the 
experimental facts above described have urged us to 
change the conventional concept that the phase separ- 
ation type alloy and the ordering type alloy have 
opposite characteristics. In order to understand 
the solute atom segregation in ordering alloy, it is 
important to evaluate the free energies of ordered and 
disordered solid solutions precisely. For the binary 
ordering alloys, theoretical pursuits [19-38] have been 
proposed by taking into account the interatomic in- 
teractions between not only the nearest neighbours 
but also the second and the higher order neighbours. 
In the theoretical treatment of this sort, even if the first 
order interaction parameter is negative, phase sep- 
arations are expected to occur when the second 
and the higher order interaction parameters are 
positive. 

As regards ternary ordering alloys, we have already 
found that the two phase regions exist in the Fe-rich 
ternary ordering alloys, e.g. Fe-Si-A1 [14], Fe-A1-Co 
[15], Fe-Si-V [16], Fe-Si-Co [16] and so on. However, 
the theoretical investigation for the ternary ordering 
systems has scarcely been performed so far, possibly 
because of the laborious descriptions of B2 and D03 
ordered structures in the ternary alloy systems. How- 
ever for the theoretical justification of experimental 
results the evaluation of free energies of the B2 and 
D03 ordered structures is important. 

In the present paper, firstly we propose the eval- 
uation method of the free energy of Fe-base ternary 
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B2 and D 0  3 ordered structures. Secondly applying the 
free energy model on the Fe-Si-Co ordering alloys, we 
show the most stable ordered structures, and discuss 
the propriety of the proposed free energy model. 

2. Theoretical  basis 
2.1. Descriptions of B2 and D03 ordered 

structures in the A-B-C ternary ordering 
system 

In order to describe the atomic configurations of B2 
and D03 ordered structures in b.c.c ternary alloy, the 
unit cell of the D03 superlattice is divided into four 
f.c.c, sublattices I, II, III, IV, as illustrated in Fig. 1. 
The atoms in the sublattice I and II are the nearest 
neighbours (n.n.) to the atoms in the sublattice 
III and IV. The atoms in the I or III sublattice are the 
second nearest neighbours (n.n.n.) to the atoms in the 
II or IV respectively. To describe the various atomic 
configurations in the first and second coordination 
spheres of the b.c.c, ternary alloys, we use six indepen- 
dent parameters defined by occupation probabilities 
~L of i atom (i = A, B) in the sublattice L(= I, II, III, 
IV), similarly as the case of binary alloys [22, 27]: 

(P~ + ,,~. _ e i .  _ pi v) 
xA = (pj § pj, + p~,, + p~V) 

(pjH _ /)iv) 
( p ~ . +  p~v) 

(PJ - P2) 
Z A = (PJ + PJ') 

( g  + g ,  _ g l ,  _ g v )  
x . =  ( g  + g ,  + g , i  + g v )  

( g .  my)  Y. - 
(PBm+ Pi v) 

( p i  _ p i l )  

Z B - (p21 + p l v )  (1) 

The parameters XA and Xe indicate the atomic con- 
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B2: ordering in the n.n. and random distribution in 
the n.n.n. 

2 2 x ~ + x ~  # 0, r ~ +  r~ = 0, z ~ + z ~  = o 

(3) 

D03: ordering in the n.n. and the n.n.n. 

X~ + X~ r O, Y~ + Y~ ~ O, ZZA + Z2 ~ (4) 

B32: random distribution in the n.n. and ordering in 
the n.n.n. 

2 3 x ~ + x ~  = o , Y ~ +  Y ~ # O , Z  2 + z ~ # o  (5) 

The structural factors of X-ray diffraction for the A2, 
B2 and D 0  3 structures of the ternary system can be 
evaluated by using the six ordering parameters. In the 
present the reflection spots are labelled by indices for 

O I  o11" i f m  -X-IV 
D �9 ,, # 

l r  , r  

2 n n  2 n n  
~r 

1 n n  

the unit cell of the D03 ordered lattice (see Fig. 1). The 
ordering in the n.n. is proved by exciting the 200 
superlattice refraction and the ordering in the n.n.n, is 
proved by the 111. The structural factors for each 
reflection are described as follows: 

IF(220)12 = 162(CAf4 4- Cef  e 4- Cc fc )  2 (6) 

Figure 1 Unit  cell of  D0 3 structure and four f.c.c, sublattices, indi- 
cating the nearest (n.n.) and second nearest (n.n.n.) neighbourhood 
between a tom sites of  the sublattices I, II, III, IV. 

IF (200) I  2 = 162[CA(fA -- fC)XA 

+ C~(f~ -- fC)X~] ~ (7) 

figurations of A and B atoms between the nearest 
neighbour sites, i.e. between the sublattices (I 4- II) 
and ( I I I +  IV). Similarly, other order parameterg YA, 
YB, ZA and ZB show the atomic configurations of A 
and B atoms between the second nearest neighbour 
sites, i.e. between the sublattices I and II and also 
between the sublattices III and IV. All parameters 
vary in a range of - 1 < X,, Y,, Zi < 1 (i = A, B). 
The configurations of C atoms would be inevitably 
determined by the parameters X,, Y,. and Zi (i = A, B). 
The uniform distribution of the atoms onto the four 
sublattices is given by a condition of  XA = YA = 
ZA = XB = Ye = ZB = 0. When YA = YB = ZA = 

Ze = 0 and XA # 0 or XB # 0, the sublattice I and II 
are preferentially occupied by A atom or B atom 
respectively. Therefore, by assuming that atoms 
are distributed at random in each sublattice, the 
amount  of unlike atom pare of the nearest neighbour 
increases, i.e. the progress of  B2 ordering. Similarly, 
when one of the parameter X, (i = A, B) is not zero 
at least and also one of the parameters Yi and 
Z, (i = A, B) is not zero at least, unlike atom pares 
between the 2nd neighbour sites increase in number. 
This gives rise to the development of D03 ordering. On 
the basis of  the above consideration, the A2, B2, D03 
and B32(NaT1) structures of A-B-C ternary system 
can generally be expressed by using the six ordering 
parameters as follows: 

A2: random distribution atoms in the nearest neigh- 
bour sites (n.n.) and the 2rid nearest neighbour sites 
(n.n.n.) 

x~+x~ = o , Y ~ +  r~ = o,z~, + z ;  = o 

(2) 

IF(lll)I  2 = 

+ c~(f~ 

+ [cA (f~ 

+ c . ( f .  

- f c ) ( l  + X A ) Z A  

- -  f c ) ( 1  4- XB)ZB] 2 

- f c ) ( 1  - Xa)YA 

- f c ) ( 1  - X ~ ) Y A  2} (8) 

In these equations, CA, CB and Cc = chemical con- 
centrations of A, B and C atoms,fA ,fB andre  = atomic 
scattering factors of A, B and C atoms, X,., Y,. and 
Zi(i = A, B) = the ordering parameters defined by 
Equation 1. 

When the B2 structure exists, the 200 super lattice 
refractions appear wi~thout 111 reflection, because the 
ordering parameter XA or Xe is not zero but YA, Ys, ZA 
and Z s are zero, as is clearly known from the Equation 
3. Similarly, if the D03 structure exists, the 111 super 
lattice refraction appears in addition to the 200 spot. 
When the disordered phase exists the super lattice 
refraction does not appear, because all ordering para- 
meters are zero. Thus, it is obvious that the atomic 
configurations of the ternary ordering, defined by 
Equations 2-5 are related to the electron diffraction 
patterns experimentally observed [14-18]. 

2.2. Descriptions of ferro- and para- 
magnetic states in the A-B-C  ternary 
system 

The magnetic interactions are derived by considering 
the pairwise interactions [23, 39]. The magnetic spin is 
assumed to have just up or down state, regardless of 
various values of the actual magnetic moment. 
Therefore there are only two separate energy states 
V,.~ ~1 and ~ )  of i-j atom pairs with parallel and anti- 
parallel spins, respectively. The following relations 
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hold; 

and 

V~ (~) = V,, O) it:* q/+ (9) 

•(•) = E ~  ( 1 0 )  ~J~ i,~jT 

The higher order of  the magnetic interactions such 
as the second nearest neighbour is neglected. The occu- 
pation probabilities of the i atom (i = A, B, C) 
with up spin or down spin onto the sublattice L ( =  I, 
II, III, IV) are given by 

~ _ P ~ ( 1  + q , )  o r  P,.{ - P~L(1 - q ' )  ( 1 1 )  
2 2 

respectively. P~(=P,} + ~{) is the probability of 
existence for the component i in the sublattice L. 
In Equation 11 (1 + q~)/2 and (1 - qi)/2 are the 
probabilities of existence of the i atom having up spin 
and down spin respectively. The para-magnetic state 
could be expressed by Equation 12: 

(1 2 q ~ ' ) =  (1 2 ~ )  = 0.5 (12, 

Here q~ represents the distribution of  magnetic spins, 
varying in a range of 0 =< q~ < 1. Theferro-magnetic 
and para-magnetic states are shown by q~ = 1 and 
q~ = 0 respectively. 

2.3. Free energies of Fe-base ternary B2 and 
D03 ordered structures 

On the basis of  the Bragg-Williams-Oorsky (B.W.G.) 
approximation [40, 41], the configurational free 
energy Fk of the A-B-C ternary system containing 
ferro-magnetic elements is given by Equation 13. 

F, = E E E N~*)V~r *) - T(Sc + Sq) (13) 
k i j 

where N~ k) = the number of atom pairs between i and 
j atoms, V,~ ~) = the bond energy between i and j atom 
in the k'th neighbours, T = temperature, Sc = the 
chemical part of  the configurational entropy, Sq = 
the magnetic part of  the configurational entropy. The 
chemical part of the configurational entropy is given by 

S c - - k , N  E ~ p L In p L (14) 
4 L 

where kB = Boltzman's constant, N = Abogadoro 
number (the number of  all lattice sites). The atomic 
interchange energies of the k'th neighbours W,.j (k) are 
deduced from the chemical bond energies; 

W,-~ k) = --2V~)k) + V~I*) + Vj} k) (15) 

where the positive W,~ k) corresponds to larger affinity 
between the unlike atom pair than the like pair, i.e. the 
ordering tendency exists. Since the average of bong 
energy in the para-magnetic i-j crystal is given by 

g(.} 1) 0 . 5 [  v ( I )  + V / 1 ) 1  (16) = '/1J1" iT/,, J 

the magnetic parameter J~)~ is defined by Equations 17 
and 18. 

V{t) = v{l~ + ~l~ (17) "tit " ij 

gi (1) ~-- ]/~(1) - -  J~}~) ( 1 8 )  
T J,[ ' ij 
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In the form of Equations 17 and 18ferro-magnetism 
occurs when J~}J) < 0. For the sake of simplicity, the 
magnetic interchange energies j~l/as well as the atomic 
interchange energies W~) k) are assumed to be indepen- 
dent of temperature, composition and distribution of  
atoms [22, 39]. The number of the atom pairs in the 
first and second nearest neighbours are given by 
Equations 19 and 20, respectively. 

Ni~l) = a~N[(pl + p/ll)(pjlll _~_ p j lV)  

_~ (pitll ~_ pilv)(pjl _~. pjll)] (19) 

NO(. 2) = 3N p,m p}V p/iV pjlll) + 8 " U +  + 

~(20) 

a~j = 1 f o r  i # j  

a~j = 0.5 for i = j  

and 

i , j  = A~',A~,BT, B,~, CT, C~. 

The probabilities p L in these equations are expressed 
by using the magnetic order parameters qA, qB and the 
chemical order parameters XA, XB, IrA, YB, ZA, Ze: 

PJ = CA(1 + XA)(1 + ZA) 

P2 = cA(1 + J(A)(] - zA) 

p~lJ = CA(1 - XA)(I + YA) 

p,~V = CA(1 -- XA)(I -- YA) 

P (1 + qA) 

2 

PAL( 1 - qA) 

2 

= G ( I  + xB)(1 + zB) 

P~' = CB(1 + XB)(1 -- Z~) 

p i l l  ~--- C B ( 1  _ XB)(1 + Y~) 

p~V = CB(1 -- XB)(1 -- Y~) 

Pk(1 + qB) 
P T- 2 

P~(1 - qB) - 
2 

L = I, II, III, IV 

where CA = atomic concentration of A, CB = atomic 
concentration of B, Cc = atomic concentration of C. 

According to Semenovskaya [29], the magnetic part 
of the configurational entropy Sq has been derived as 
follows: 

kBN~, Ci{ln (8 - 6qi + 2x/4 - 3q 2) 
i 

- (1 + qi)In (qi + x/4 - 3 q ~ )  

- (1 - -  q ~ ) i n  [2 (1  - -  qs ) ] }  ( 2 2 )  

Consequently, the configurational free energy of A-B- 
C ternary system containing ferro-magnetic elements 



can be e x p r e s s e d  by Equation 23 

Fk = U ~ - N E C~Cj{4fW~} ~) + M~ ~>] + 3Wo! 2)} 
o 

+ 4N Z CiJi~t)q~ + U Z CiC~XiXj 
i ij 

• + - 3 w , ? }  

3N 
+ 5 - 2  - - t j  

+ (1 + Y~)(1 + Xj)Z, ZjlW,.) 2) 

kNT 
+ k N r  E, C, ln C, + ~ , ~ . .  Ci((1 - X~) 

x l n ( 1  - X~) + (1 + Y, ) ln (1  + X~)} 

k N T  
+ ~- ~ {C~(1 - X~)[(1 + Y~)ln(1 + Yi) 

i 

+ (1 - Y~) In (1 - Y~)] 

+ re(1 + X,)[(1 + Z~)In (1 + Z,) 

+ (1 - Z , ) In  (1 - Z~)]} 

- k N T ~  rn, C,{ln (8 - 6q~ + 244 - 3q~) 
i 

- (1 + qi) In (q,  + x /4  - 3q~) 

- (1 - q , ) i n  [2(1 - q,)]} 

where 

and 

+ 3 

M~') = _ 2jbI~ qiqj + J,~') q~ + 4~Il q 2 

~/ = AB,  BC, CA 

i = A , B , C  

mA = m e  = m c  = 1 i f  r(~ r 0 

J(B~ # 0 and J(c~# 0 

m A = 0 if J(A~ = 0 

m e = 0 if J(e~ = 0 

m c = 0 if Jgc ) = 0 (23) 

mi = a parameter to qualify the ferro-magnetic 
energy with/-element, which is usually unit in the  case  
where i is ferro-magnetic element. 

In Equation 23 U ~ is the bonding energy term of 
pure components, which is not significant for the 
order-disorder phase transitions. The second term is 
the energy of mixing, the third term is the internal 
energy due to the ferro-magnetic components, the 
fourth and fifth terms show the energy contribution 
arising from the atomic ordering in the n.n. and in the 
n.n.n., respectively. The last term in Equation 23 is 
entropy contribution. Thus, the configurational free 
energy is now evaluated. 

3. Appl icat ions to the Fe-S i -Co 
ordering system 

3.1. Calculation method 
The most stable configuration of the phases was deter- 

mined by numerical calculations in computer, using 
the energy parameters W~} k) (k = 1, 2) and J~}~). The 
numerical values used for the calculation are listed in 
the following, which have already been given by Inden 
[28, 42] for the binary s y s t e m s  the structure deter- 
mined on the basis of the B.W.G. model. 

WF 1) ~_. 2010kBJmol  -I eSi 

WF 1) = 410kBJmol -~ eCo 

m s  1) = 2 600 kB Jmol  1 iCo 

WF (2~ = 1 000 kB J mol-1 eSi 

Wv ~2~ = 0 k B J mol-I  eCo 

Ws!~o = 700 kB J mol- '  

J~fe - t96kB Jmol  1 

J(~o)co - 261 kBJmol -l 

J(FI2co - -  296 kB J mol 1 

The stable configuration of ordered phases w a s  
numerically calculated using the steepest decent 
m e t h o d .  If the numerical calculation gives a specified 
solution of  the order parameters, this value cor- 
responds to the most stable atomic configurations. As 
an example, the ordering excess energy F ~ is plotted 
in Fig. 2a to c for the F e - 5 a t %  Si -5a t% Co, 
Fe- 10 at % Si- 13 at % Co and Fe- 18 at % Si- 16 at % 
Co alloys at 823 K with respect to only the chemical 
order  parameter. The minimum point of F ord in the 

coordinate system of  the order  p a r a m e t e r  is indicated 
by XAmin, X~min, ZAmin and ZBmin. In Fig. 2 the 
description of F ~ with respect to Y,.(i = A, B) is 
omitted, because the YAmin and Yemin are always 
zero to 823 K. The F ~ with Zi(i = A, B) are cal- 
culated under the condition of the fixed XA min and 
X~min. In a case of  the Fe-5 at % Si-5 at % Co alloy 
shown in Fig. 2a the order  p a r a m e t e r s  XAmin, 
XBmin, ZA min and ZA min are zero, indicating that the 
di sordered  configuration, i.e. A2 structure, is most 
stable. However with increase of the solute content 
so  as to exceed a certain critical composition, the 
parameters XAmin and X~min move from zero. In 
Fig. 2b for the Fe -10a t% Si-13at% Co alloy the 
X4min = 0.75, Xsmin = - 0 . 3 5 ,  ZAmin = 0 and 
Zsmin = 0. These parameters show that the B2 
s tructure  is stable in this case, because the ordering 
exists only in the neares t  neighbour bond. In the 
high solute content alloy the parameters Zimin 
also become non-zero, as can be seen in Fig. 2c; 
XAmin = 0.99, X~min = -0 .76 ,  ZAmin = 0.95 and 
Zemin = -0 .24 .  The D 0  3 configuration is most 
stable .  

3.2. Configuration diagrams of the Fe-Si-Co 
system 

Fig. 3 shows the configuration diagram calculated at 
823 K, which shows the most stable atomic configur- 
ations of the homogeneous solid solutions. The solid 
curves indicate the phase boundaries of A2/B2 and 
B2/D03, respectively. The D 0  3 structure is stable in the 
composition range more than 12at % Si. The dotted 
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Fe-IOSi-13Co ,823 K 
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- 0 I 
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O 
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j . I  
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"6 

- 1 - 1  O - -  

xA 

X).99 

I 

- I  O 
ZA 

/ , , r O . z e  

XAmin = 0.99 
X 8 Win =-O,76 

Figure 2 Configurational part of the free energy with respect to the order parameters XA, XB, Z.4, Z B calculated for Fe-5 at % Si-5 at % Co 
(a), Fe-10at % Si-13at % Co (b) and Fe-18at % Si-16%Co (c), at 823K. 

curve in Fig. 3 shows the change of  Curie temperature 
(Tc) with composition. Therefore, A2 and B2 struc- 
tures areferro-magnetic at 823 K, while D03 structure 
is in ferro-magneti c or para-magnetic state. Fig. 4 
represents equi-Curie temperatures, calculated for 
various temperatures from 723 K to 1 323 K. The Curie 

temperature, having a summit at about Fe-50 at % Co, 
decreases with increasing Si content�9 

4 .  D i s c u s s i o n  
The calculated diagram is compared with the experi- 
mentally obtained one. Fig. 5 is an isothermal Fe-Si-  
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20  "" #r149 

S j,�9 
S" 

S ;  S#�9 t I I / . 
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@" 

,,'" re 

Figure 3 An isothermal configuration diagram calculated for 
Fe-rich Fe-Si-Co ternary system at 823 K. 

Co phase diagram at 823 K with Fe-Si  and F e - C o  
binary phase diagrams, which was experimentally 
obtained [16]. This figure shows the existence of  A2, 
B2 and D03 single phase regions and also coexistent 
regions o f  B2 + D03. The boundaries  of  A2/B2 and 
B2/D03 transitions in the calculated configurat ion 
diagram (Fig. 3) are seemed to be consistent with the 
experimentally obtained one (Fig. 5). Fig. 6 shows the 
Curie temperatures experimentally obtained for the 
various F e - S i - C o  ternary alloys. Other  researcher's 
work [42] is also represented in Fig. 6. It should be 
noted that the experimental Curie temperatures are 
fairly well consistent with the theoretical temperatures 
shown in Fig. 4. 

In order  to know the influence o f  the ferro- 
magnetism on the ordered structures, the configur- 
at ion diagram of  the pure para-magnetic states 
(qA = qB = 0) is given in Fig. 7. The solid curves 
show the A 2/B2 and B2/DO~ transitions for the para- 
magnetic  state. The phase transition offerro-magnetic 
state are also described in dot ted curves. It should be 
noticed that  theferro-magnetism produces the drastic 

/ 1 3 2 3 K  
o 5 0 / f  / ,1223K 

30~~~;~/~~ ~ ~ ~~ .~KK 

�9 �9 t l i / Fe IO 2 0  30 40 5 0  6 0  

at%Si 

Figure 4 The contour map of equi-Curie temperatures calculated 
for Fe-rich Fe-Si-Co ordering system. 

<2 823K ~ ,o\O l ',/& / 
�9 ,~,'. ~o/ / .  . . . .  

,, , , /  ~ /.4- .... 

,,,' 20 I /o ,7/, oo 
/ /  X 

(2) / - -  

"~'o,~ ,~J ~ , ,I l �9 -/-"- , �9 
-~,%. A, Fe I0', 20 30 

Y 773 ', I , at%Si 

) " . . . . . .  +1:)03 
873 A2 

/ ~ . B  2 DO3 ~'973 
I~ \ \ Swann et al. 

Figure 5 An isothermal section phase diagram of Fe-rich Fe-Si-Co 
ternary system at 823 K together with Fe Si and Fe-Co binary 
phase diagrams, O = A2 phase, x = B2 phase, [] = D03 phase 
and �9 - B2 + D0~ phase [16]. 

contract ion of  disorder A2 region, that  is drastic 
expansion of  B2 region as can be seen in the low Si and 
high Co composi t ion area, while the B2 region 
shrinks, a l though slightly, in the composi t ion area o f  
10 ~ 20 at % Co and 10 at % Si. Thus  the expansion 
of  the B2 region, i.e. the stabilization o f  B2 structure 
is considered to be due to the large magnetic contri- 
bution to the F e - C o  n.n. bond,  as compared  with that 
to the F e - F e  or C o - C o  n.n. bonds.  On the other hand, 
the destabilization of  B2 structure which is seen in the 
low Co composi t ion area is caused by the additional 
magnetic strength to the F e - F e  n.n. bonds.  Since the 
B2/DO~ transit ion in the figure is scarcely moved by 

/ ,,,~--tS23K 
/ 

o,o,o o / 
3o/*"  /_ /.,.~'r/ 

.64/~.~ j / ._ lO23K / J Z ' 9 , ,  / 
20/-" ~ 9 o y  / / . , - . .~,  

, .  

, , , , ,  

Fe I0  2 0  3 0  4 0  

a t % S i  

Figure 6 Measured Curie temperatures of Fe-Si-Co alloys, 
�9 = this work, o = Inden [42] and the contour map ofequi-Curie 
temperatures. 
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50, . . . . .  ferro-magnetic 

para-rnagnetic 

at%Co 

; '  ~ ~r 8 2 3 K  

t t ( ~ { r { 

Fe lO 20  3O 4 0  
at%Si 

Figure 7 The calculated configuration diagrams of both para- 
magnetic andferro-magnetic states, respectively, to demonstrate the 
influences of theferro-magnetism to ordered structures. 

the additional magnetic energy, the DO3 structure 
seemed to be less effected by the magnetic energy, 
compared with the case of B2 structure. 

From the free energy of the most stable states the 
phase diagram is easily obtained by the common tan- 
gent contraction with different compositions and dif- 
ferent degrees of order. The theoretical investigations 
on the phase diagrams will be reported in the near 
future. 

5. Conclusions 
The free energy of Fe-base ternary ordering alloys 
where the B2 and D03 ordered structures were formed 
was evaluated on the basis of the statistical approach 
of the Bragg-Williams-Gorsky approximation. The 
magnetic interaction was also taken into account. The 
configuration diagrams of Fe-Si-Co ternary ordering 
system were calculated and compared with the 
experimental results to show the propriety of the cal- 
culated results. The influences of the magnetic energy 
on the structural stability of ordered phases are also 
demonstrated. The theoretical description proposed in 
the present study is useful for the thermodynamic 
implication of the equilibrium phase diagrams. 
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